Efecto de Trichoderma asperellum Formulado con Enzimas sobre el Crecimiento del Maíz Jala y el Control del Gusano Cogollero (Spodoptera frugiperda)
Effect of Trichoderma asperellum Formulated with Enzymes on the Growth of Jala Corn and the Control of the Fall Armyworm (Spodoptera frugiperda).
Referencias:
Abbas, A., Ullah, F., Hafeez, M., Han, X., Dara, M. Z. N., Gul, H., & Zhao, C. R. (2022). Biological control of fall armyworm, Spodoptera frugiperda. Agronomy, 12(11), 2704. https://www.mdpi.com/2073-4395/12/11/2704
Arispe-Vázquez, J. L., Sánchez-Arizpe, A., Cadena-Zamudio, D. A., Galindo-Cepeda, M. E., Noriega-Cantú, D. H., Barrón-Bravo, O. G., & Antonio-Bautista, A. (2023). The beneficial effect of Trichoderma spp. in seed treatment of four maize (Zea mays L.) genotypes. American Journal of Plant Sciences, 14, 625–637. https://doi.org/10.4236/ajps.2023.146042
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2021). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(1), 249–260. https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf
Contreras-Cornejo, H. A., Schmoll, M., Esquivel-Ayala, B. A., González-Esquivel, C. E., Rocha-Ramírez, V., & Larsen, J. (2024). Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiological Research, 281, 127621. https://www.sciencedirect.com/science/article/pii/S0944501324000223
Csótó, A., Tóth, G., Riczu, P., Zabiák, A., Tarjányi, V., Fekete, E., & Sándor, E. (2024). Foliar spraying with endophytic Trichoderma biostimulant increases drought resilience of maize and sunflower. Agriculture, 14(12), 2360. https://www.mdpi.com/2077-0472/14/12/2360
Cuenca-Sedamanos, J. A., Quevedo-Guerrero, J. N., Tuz-Guncay, I. G., & Chabla-Carillo, J. E. (2022). Trichoderma spp.: Propagation, dosage and application in maize crop (Zea mays L.). Ciencia y Agricultura, 19(3). https://doi.org/10.19053/01228420.v19.n3.2022.14692
De Lima, R. A. F. de, Dauby, G., de Gasper, A. L., Fernandez, E. P., Vibrans, A. C., de Oliveira, A. A., Prado, P. I., Souza, V. C., de Siqueira, M. F., & ter Steege, H. (2024). Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science, 383(6555), 219–225. https://doi.org/10.1126/science.abq5099
Eftekhari, A., et al. (2025). Effects of mycorrhizal and Trichoderma treatment on enhancing maize under salinity and drought stress. BMC Plant Biology, 25, 687. https://doi.org/10.1186/s12870-025-06729-x
Estévez-Geffriaud, V., Vicente, R., Vergara-Díaz, O., Narváez-Reinaldo, J. J., & Trillas, M. I. (2020). Application of Trichoderma asperellum T34 on maize (Zea mays) seeds protects against drought stress. Planta, 252(1), 8. https://www.jstor.org/stable/48742260
Fu, J., Xiao, Y., Liu, Z. H., Zhang, Y. F., Wang, Y. F., & Yang, K. J. (2020). Trichoderma asperellum improves soil microenvironment in different growth stages and yield of maize in saline-alkaline soil of the Songnen Plain. Plant, Soil and Environment, 66(12), 639–647. https://doi.org/10.17221/456/2020-PSE
Haider, M. U., & Ahmad, S. (2025). Virulence of different entomopathogenic fungal strains against different life stages of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Wildlife and Biodiversity, 9(1), 183–199. https://jbiopestic.com/archivesbrief.php?id=735
Harman, G. E. (2011). Trichoderma—Not just for biocontrol anymore. Phytoparasitica, 39(2), 103–108. https://doi.org/10.1007/s12600-011-0151-y
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797
Jia, L. I. U., Zhang, Q. G., Wei, S. O. N. G., & Jie, C. H. E. N. (2019). Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. Journal of Integrative Agriculture, 18(3), 599–606. https://www.sciengine.com/JIA/doi/10.1016/S2095-3119(18)62089-1
López-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109–123. https://doi.org/10.1016/j.scienta.2015.08.043
López-Coria, M., Guzmán-Chávez, F., Carvente-García, R., Muñoz-Chapul, D., Sánchez-Sánchez, T., Arciniega-Ruíz, J. M., King-Díaz, B., & Sánchez-Nieto, S. (2023). Maize plant expresses SWEET transporters differently when interacting with Trichoderma asperellum and Fusarium verticillioides. Frontiers in Plant Science, 14, 1253741. https://doi.org/10.3389/fpls.2023.1253741
López-Coria, M., Hernández-Mendoza, J. L., & Sánchez-Nieto, S. (2016). Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H⁺-ATPase. Molecular Plant-Microbe Interactions, 29(10), 797–806. https://doi.org/10.1094/mpmi-07-16-0138-r
Lu, Z., Huang, X., Yang, K., & Fu, J. (2024). Trichoderma rhizosphere soil improvement: Regulation of nitrogen fertilizer in saline–alkali soil and its effect on the microbial community structure of maize roots. Agronomy, 14(10), 2340. https://doi.org/10.3390/agronomy14102340
Ma, Y., Li, Y., Yang, S., Li, Y., & Zhu, Z. (2023). Biocontrol potential of Trichoderma asperellum strain 576 against Exserohilum turcicum in Zea mays. Journal of Fungi, 9(9), 936. https://www.mdpi.com/2309-608X/9/9/936
Martínez-Hidalgo, P., Al-Kajim, A., & Smith, D. (2025). Trichoderma: A multifunctional agent in plant health and microbiome interactions. BMC Microbiology, 25, 158. https://doi.org/10.1186/s12866-025-04158-2
Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213–1221. https://doi.org/10.1094/PHYTO-03-10-0091
Mendoza-Mendoza, A., Zaid, A., & Lawry, R. (2018). Molecular dialogues between Trichoderma and roots. Annual Review of Phytopathology, 56, 159–177. https://www.sciencedirect.com/science/article/abs/pii/S1749461317300738
Mukherjee, P. K., Horwitz, B. A., & Herrera-Estrella, A. (2022). Trichoderma research in the genome era. Annual Review of Phytopathology, 61, 123–147. https://doi.org/10.1146/annurev-phyto-082712-102353
Okoth, S. A., Otadoh, J. A., & Ochanda, J. (2011). Improved seedling emergence and growth of maize and beans by Trichoderma harzianum. Tropical and Subtropical Agroecosystems, 13(1), 57–66. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-04622011000400011
Ribeiro, E. A., de Oliveira, R. S., Chagas-Junior, A. F., et al. (2021). Volatile organic compounds produced by Trichoderma spp. improve initial growth of maize. Australian Journal of Crop Science, 15(2), 215–223. https://doi.org/10.21475/ajcs.21.15.02.p2605
Rivas-Franco, M., et al. (2022). Myco-synergism boosts herbivory-induced maize defense by triggering antioxidants and phytohormone signaling. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2022.790504
Rodríguez-Barrón, J. I., Rodríguez-Blanco, R., Méndez-Flores, E., Mata-Prado, V. M., & Arjona-Vizcaíno, I. (2025). Interacción agroecológica entre Trichoderma asperellum y la proliferación natural de mariquitas en sistemas de maíz criollo e híbrido. Revista Multidisciplinaria de Ciencia Básica, Humanidades, Arte y Educación, 3(12), 72–77. https://doi.org/10.5281/zenodo.15476139
Rodríguez-Barrón, J. I., Cueto-Simancas, L. A., Ortega-Ramírez, D. R., Mata-Prado, V. M., Méndez-Flores, E., & Rodríguez-Blanco, R. (2025). Native Trichoderma species with potential in the growth of seedlings of maize Jala race. Journal of Agricultural Sciences Research, 5(2). https://doi.org/10.22533/at.ed.973522527012
Salinas-Ruíz, J., Montesinos-López, O. A., & Crossa, J. (2024). Randomized complete block design with PROC GLIMMIX of SAS. En Introduction to Experimental Designs with PROC GLIMMIX of SAS (pp. 75–98). Springer. https://doi.org/10.1007/978-3-031-65575-3_4
Saleh, M., & Ibrahim, H. M. S. (2025). Evaluation of Trichoderma bio-control agents and pre-cultivation seed treatments for controlling late wilt disease and improving maize production. BMC Plant Biology, 25, 801. https://doi.org/10.1186/s12870-025-06881-4
Sánchez-Montesino, R., Bouza-Morcillo, L., & Rodríguez, L. (2019). Plant defense activation and growth promotion by Trichoderma spp.: Trade-offs between production and energy costs. Frontiers in Plant Science, 10, 1476. https://doi.org/10.3389/fpls.2019.01476
Sedamanos, J. A. C., Guncay, I. G. T., Carillo, J. E. C., & Cruz, E. F. V. (2022). Trichoderma spp: Propagación, dosificación y aplicación en el cultivo de maÃz (Zea mays L.)/Trichoderma spp: Propagation, dosage and application in maize crop (Zea mays L.). Ciencia y Agricultura, 19(3), NA-NA.
Valiño, E., Alberto, M., Dustet, J. C., y Albelo, N. (2010). Production of lignocellulases enzymes from Trichoderma viride M5-2 in wheat bran (Triticum aestivum) and purification of their laccases. Cuban Journal of Agricultural Science, LIV(1). https://www.cjascience.com/index.php/CJAS/article/view/946/1027
Silva, B. B., Banaay, C. G., & Salamanez, K. (2019). Trichoderma-induced systemic resistance against the scale insect (Unaspis mabilis) in lanzones. Agriculture & Forestry, 65(2), 59–78. https://doi.org/10.17707/AgricultForest.65.2.05
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14, 1160551. https://doi.org/10.3389/fmicb.2023.1160551
