An alternative software for calculating lattice parameters from X-ray diffraction data

Red cristalina: un software alternativo para calcular parámetros de red a partir de datos de difracción de rayos X.

Juan Jesús Reyes Valdez
Instituto Politécnico Nacional, CICATA
Unidad Altamira
ORCID 0000-0002-0208-6667

Sandra Edith Benito Santiago
Universidad Politécnica de Altamira
ORCID 0000-0002-5326-0397

Ana Cecilia Espíndola Flores
Instituto Politécnico Nacional, CICATA
Unidad Altamira
ORCID 0000-0001-5525-3927

Received: August 21, 2025 | Accepted: September 25, 2025 | Published: September 27, 2025 |



How to cite:
Reyes-Valdez, J. J., Benito-Santiago, S. E., Espíndola-Flores, A. C. (2025). Crystal Lattice: An alternative software for calculating lattice parameters from X-ray diffraction data. Revista Multidisciplinaria de Ciencia Básica, Humanidades, Arte y Educación, 3(14), 22-27.
https://www.mjshae.org/2025/09/an-alternative-software-for-calculating.html [.RIS]

10.5281/zenodo.17211757

Abstract:
In materials synthesis research, understanding the lattice parameters is crucial for determining the phase and evolution of a material's microstructure. Crystal Lattice is user-friendly, free software designed to calculate the lattice parameters of the seven crystalline systems using one or more X-ray diffraction (XRD) planes. Developed in an accessible programming environment like Visual Studio, this program employs analytical methods to calculate the lattice parameters. To use the software, users need to input the diffraction angle (2θ) and the Miller indices (hkl); with this information, the program determines the lattice parameters. Additionally, Crystal Lattice can calculate the crystallite size based on the diffraction angle (2θ) and the full width at half maximum (FWHM). The software validation used information from the ICSD (Inorganic Crystal Structure Database) crystallographic card of different chemical compounds. The data was processed using the equation corresponding to each crystal structure. The results were compared with the information provided in the ICSD crystallographic card data, obtaining a mean error of 0.059%.

Keywords: X-ray diffraction; lattice parameters; Miller indices; crystal structure; software.



References:

Clark, H. K., & Hoard, J. L. (1943). The Crystal Structure of Boron Carbide. Journal of the American Chemical Society, 65(11), 2115–2119. https://doi.org/10.1021/ja01251a026

Cullity, B. D., & Stock, S. R. (2014). Elements of X-ray diffraction (Third Edition). Pearson Education Limited.

Fleet, M. E. (1986). The structure of magnetite: Symmetry of cubic spinels. Journal of Solid State Chemistry, 62(1), 75–82. https://doi.org/10.1016/0022-4596(86)90218-5

Kurniawan, A., & Irzaman. (2021). Android based XRD data analysis software design for cube crystal structure with analytic and Cohen methods. 030001. https://doi.org/10.1063/5.0037472

Müller-Bunz, H., & Schleid, T. (1999). On the Oxide Silicates M2O[SiO4] of the Heavy Lanthanides (M = Dy-Lu) with the A-Type Structure. Zeitschrift Für Anorganische Und Allgemeine Chemie, 625(4), 613–618. https://doi.org/10.1002/(SICI)1521-3749(199904)625:4<613::AID-ZAAC613>3.0.CO;2-A

Nikam, R. M. (2021). Simple Calculation based Method for Lattice Parameters in Tetragonal System using Powder X-Ray Diffraction Data. International Journal for Research in Applied Science and Engineering Technology, 9(5), 85–88. https://doi.org/10.22214/ijraset.2021.34037

Oponowicz, A., Marciszko-Wiąckowska, M., Baczmański, A., Klaus, M., Genzel, C., Wroński, S., Kollbek, K., & Wróbel, M. (2020). Gradient of Residual Stress and Lattice Parameter in Mechanically Polished Tungsten Measured Using Classical X-rays and Synchrotron Radiation. Metallurgical and Materials Transactions A, 51(11), 5945–5957. https://doi.org/10.1007/s11661-020-05967-y

Proffen, T., Page, K. L., McLain, S. E., Clausen, B., Darling, T. W., TenCate, J. A., Lee, S.-Y., & Ustundag, E. (2005). Atomic pair distribution function analysis of materials containing crystalline and amorphous phases. Zeitschrift Für Kristallographie, 220(12/2005), 1002–1008. https://doi.org/10.1524/zkri.2005.220.12_2005.1002

Sham, E. L., Aranda, M. A. G., Farfan-Torres, E. M., Gottifredi, J. C., Martı́nez-Lara, M., & Bruque, S. (1998). Zirconium Titanate from Sol–Gel Synthesis: Thermal Decomposition and Quantitative Phase Analysis. Journal of Solid State Chemistry, 139(2), 225–232. https://doi.org/10.1006/jssc.1998.7833

Sturman, B. D., Mandrino, J. A., Mrose, M. E., & Dunn, P. J. (1981). Gormanite, Fe3+2Al4(PO4)4(OH)6·2H2O, the ferrous analogue of souzalite, and new data for souzalite. The Canadian Mineralogist, 19(3), 381–387. https://rruff.info/rruff_1.0/uploads/CM19_381.pdf

Swanson, H. E., Morris, M. C., Evans, E. H., & Ulmer, L. (1964). National Bureau of Standards Monograph 25, Section 3. U.S. Department of Commerce. https://rruff.info/uploads/USNBSM_25_1965_21.pdf

© (CC BY 4.0)

Cintillo Legal: Revista Multidisciplinaria de Ciencia Básica, Humanidades, Arte y Educación (Rev. Mult. C. Hum. Art. y Educ.) ISSN 2992-7722 es una publicación internacional bimestral con actualización continua, editada por Prolatam Ética Latam, A.C. con Registro Nacional de Instituciones y Empresas Científicas y Tecnológicas (RENIECYT) número 1900530. Correo electrónico de la revista: editor@mjshae.org. Reserva de Derechos al Uso Exclusivo otorgado por el Instituto Nacional del Derecho de Autor (INDAUTOR): 04-2023-082114463300-102. Las opiniones expresadas por los autores no necesariamente reflejan la postura de los editores. Se autoriza la reproducción total o parcial de los contenidos publicados, siempre y cuando se cite la fuente original. Última actualización: octubre de 2025.